

## Design fire scenarios and fire simulations for the CMS experimental cavern

### **Michael Plagge**

Physics Department Compact Muon Solenoid Experiment Group

Institute of Process Equipment and Environmental Engineering Department of Process Design and Safety Otto-von-Guericke-University Magdeburg

### Risk assessment – where to start?





Photos taken in USC55 by Niels Dupont-Sagorin, Deputy GLIMOS, October 2011





Alpert, Ronald L., Ceiling Jet Flows, in Chapter 2: Fire Dynamics, SFPE Handbook of Fire Engineering, 4th ed., 2008





Hosser, Dietmar (editor), Leitfaden Ingenieurmethoden des Brandschutzes (German fire safety engineering guidelines), Technical report TB 04-01, vfdb, 2009























## Numerical simulations with OpenFOAM

- UXC55 volume w/o detector
- 700,000 to 6,000,000 cells
- About 20 equations per cell
- Implicit/explicit solving schemes
- 5 species: CH<sub>4</sub>,O<sub>2</sub>,N<sub>2</sub>,CO<sub>2</sub>,H<sub>2</sub>O
- 1-step infinite fast reaction
- Mass and heat transfer
- Single burner w constant HRR
- Parallel computationally expensive

http://code.google.com/p/firefoam-dev/ http://www.openfoam.org/



Temperature

-500 -488.889

-477.778 -466.667

-455.556 -444.444

-433.333

-411.111

Ζ

Max: 1395. Min: 300.0

T in K

# Comparison 0.5, 1 and 5 MW steady fire with closed plug





Fire: gaseous CH<sub>4</sub>, 0.5, 1 and 5 MW max. HRR, 20 min steady combustion



**Michael Plagge** 



**Michael Plagge** 

# Comparison 0.5 MW steady fire with different ventilation speeds





Fire: gaseous  $CH_4$ , 0.5 MW max. HRR, 20 min steady combustion Ventilation flows: 20,000 m<sup>3</sup>/h, 40,000 m<sup>3</sup>/h and 60,000 m<sup>3</sup>/h



**Michael Plagge** 



**Michael Plagge** 



Heskestad, Gunnar, Fire Plumes, Flame Height and Air Entrainment, in Chapter 2: Fire Dynamics, SFPE Handbook of Fire Protection Engineering, 4th ed., 2008

#### 5/15/13

## Conclusions



- Model shows qualitative agreement with hand calculations and empirical correlations
- Solid part to be investigated
- Diffusion model or similar needed
- Aerosol interaction model necessary